

Датчик тока магнитный ДТМ

1.Описание

1. Описание

Датчик тока магнитный (ДТМ) обеспечивает бесконтактное измерение тока посредством измерения магнитного поля от измерительного проводника, интегрированного в датчик. ДТМ обеспечивает гальваническую развязку между силовой и измерительной цепью. ДТМ обладает высокой чувствительностью и позволяет измерять постоянные и знакопеременные токи с точностью до \pm 1%. Сопротивление измерительного проводника ДТМ составляет не более 0,05 Ом. Область применения: системы управления электродвигатели постоянного тока; системы управления электродвигатели переменного тока; источники питания; защитные устройства автоматики; аккумуляторные батареи, и т.д.

Функциональные аналоги ACS756 (Allegro LCC), CDS4000 series (Sensitec Gmbh).

Особое внимание уделено защите электроники от воздействия влаги и помех по цепи питания.

2. Основные характеристики

Таблица 1 - Основные характеристики ДТМ

Наименование параметра	Значение
Напряжение питания	5,0 ±0,5B
Ток потребления	не более 25 мА
Диапазон выходного напряжения	от 0,7 до 4,3 В
Диапазоны измеряемых токов (для	5, 10 A
разных исполнений)	
Максимальная частота измеряемого	30 кГц
тока	
Диапазон рабочих температур	от -60 до +105 °C
Масса: не более	30 г

Таблица 2 - Стойкость к внешним воздействующим факторам

Наименование параметра	Значение
Синусоидальная вибрация	5-12g в полосе 5 2000 Гц
Одиночный удар	36 g, 20-50 мс
Линейное ускорение	30 g
Повышенная влажность	98% при 35°C
Повышенное давление воздуха	800 мм рт. ст.
Пониженное давление воздуха	190 мм рт. ст.
	1

Наработка на отказ: не менее 10 000 ч в пределах срока службы Тсл 10 лет.

Способ монтажа: пайка в отверстия печатной платы.

В зависимости от предельного значения измеряемого тока, датчик выпускается в трёх габаритах:

Габаритные размеры конструктивное исполнение 1 и 2 с магниторезистором: 20 x 40 x 11,3 мм (без учёта выводов) для 5, 10 А

Габаритные размеры конструктивное исполнение 3 и 4 с магниторезистором: 20 х 40 х 11,3 мм (без учёта выводов) для 35, 70 А

Габаритные размеры конструктивное исполнение 5 и 6 с датчиком Холла:

 $19,8 \times 29,8 \times 8,7$ мм (без учёта выводов) для $5,\,10$ А

Тип выходного интерфейса (на выбор):

А – аналоговый

Ц- цифровой интерфейс SPI

K – компаратор (с точностью $\pm 10\%$ от выбранного диапазона токов)

 $ext{Ш} - ext{ШИМ-}$ сигнал (частота сигнала выбирается из ряда: 488; 976; 1953; 3906 $ext{Гц}$)

Технические условия ДМШК.411113.001ТУ высылаются по запросу

3. Форма записи

Пример записи обозначения при его заказе и в документации в котором он может быть применен:

ДТМ – X – Y – Z ДМШК.411113.001ТУ

где X – диапазон проверяемых токов, A: 05, 10, 35, 70;

Y — тип выходного интерфейса: A — аналоговый, \coprod — цифровой (SPI), K — компаратор¹⁾, \coprod — \coprod ИИМ- сигнал²⁾;

Z – тип чувствительного элемента.

ДТМ – X – Y – Zh ДМШК.411113.001ТУ

где X – диапазон проверяемых токов, А: 05, 10;

Y — тип выходного интерфейса: A — аналоговый, Ц- цифровой (SPI), K — компаратор $^{1)}$, Ш — ШИМ- сигнал $^{2)}$;

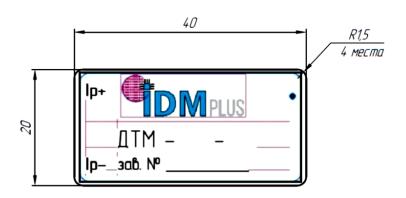
Zh – тип чувствительного элемента.

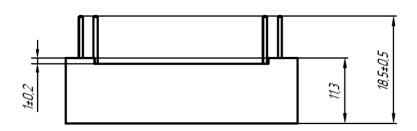
²⁾ Частота ШИМ- сигнала указывается при заказе из ряда: 488 Гц; 976 Гц; 1953 Гц; 3906 Гц и указывается в скобках после обозначения типа интерфейса,

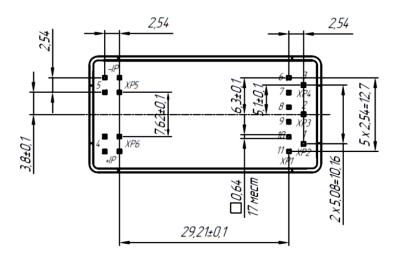
 $^{^{1)}}$ Порог срабатывания компаратора указывается при заказе и не должен превышать значения диапазона измеряемых токов. Точность установки порога срабатывания составляет $\pm 10\%$ от выбранного диапазона токов и указывается в скобках после обозначения типа интерфейса, например: ДТМ- 35 - K(31,5). Порог срабатывания с указанной точностью может выставляться на любой ток в выбранном диапазоне.

например: ДТМ- 05- Ш(1953).Выходные цепи ДТМ должны быть распаяны для определенного интерфейса в соответствии с таблицей 1.

Таблица 1 – Назначение выводов ДТМ


Номер	Функциональное	Обозначение	Наименование вывода
контакта	назначение	ввода	
1	Напряжение	VDD	Питание 5 В
	питания		
2	Земля	GND	Общий
3	Аналоговый	AOUT	Выход аналогового
	выход / ШИМ /		интерфейса
	Компаратор		
4	Токовые выводы	IP+	Проводники для задания
_			измеряемого тока и выбор
5		IP-	направления полярности
6	Цифровой	CFG	Вход выбора режима
	интерфейс SPI		работы интерфейса SPI
7		MISO	Выход интерфейса SPI
8		SCK	Шина тактового сигнала
			интерфейса SPI
9		MOSI	Вход интерфейса SPI
10		CSn	Вход активации интерфейса
			SPI
11		GND	Общий

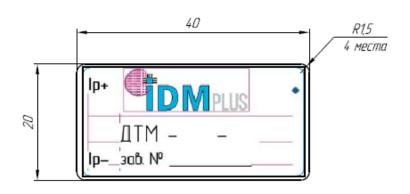


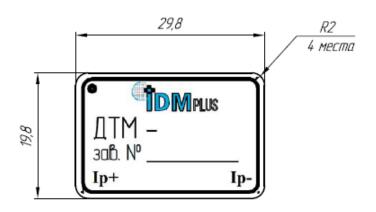


4. Габаритные размеры

Габаритные, установочные и присоединительные размеры ДТМ

Рисунок 2.1 — Габаритные, установочные и присоединительные размеры ДТМ для конструктивного исполнения 1, 2





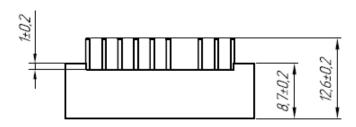


Рисунок 2.2 – Габаритные, установочные и присоединительные размеры ДТМ для конструктивного исполнения 3, 4

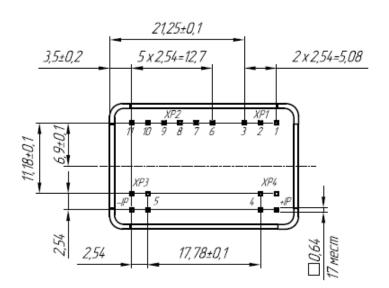


Рисунок 2.3 — Габаритные, установочные и присоединительные размеры ДТМ для конструктивного исполнения 5 и 6

